DICP Course - Dalian, 2012 Preparation of solid catalysts Part 6

Supported by the Chinese Academy of Sciences

Charles Kappenstein, Professor Emeritus, University of Poitiers, France

DALIAN INSTITUTE OF CHEMICAL PHYSICS, CHINESE ACADEMY OF SCIENCES

Preparation of catalysts 6

Dalian, March-April 2012

1/xx

Introduction and general aspects

Interfacial chemistry – Electrostatic adsorption

Impregnation, drying, calcination and/or reduction

Sol-gel chemistry processing

Deposition – Precipitation and Coprecipitation

Preparation of bimetallic catalysts

Zeolite-based catalysts

<u>**Characterization – High throughput experimentation**</u>

Case studies:

- Noble metal catalysts
- Methanol catalysts
- Hydrotreating catalysts
-

Preparation of bimetallic catalysts

- 1) Introduction
- 2) Redox preparation
- 3) Surface organometallic chemistry (SOMC)

Introduction

Bimetallic catalytic systems are proposed to improve Catalysts activity, Selectivity, Stability.

Selectivity depends on specific sites

- low coordination sites: edges, corners, adatomes
- high coordination sites: faces, terraces

Stability depends on catalyst resistance

- to poisoning
- to sintering
- to structural or composition modification

→ How to prepare bimetallic catalysts to achieve these aims?

Introduction

Classical Methods:

- Co-impregnation
- Co-precipitation
- Successive impregnations

But

- → Heterogeneous particles
- → Random location of the second metal

Optimization of the preparation procedure: Controlled Surface Reactions

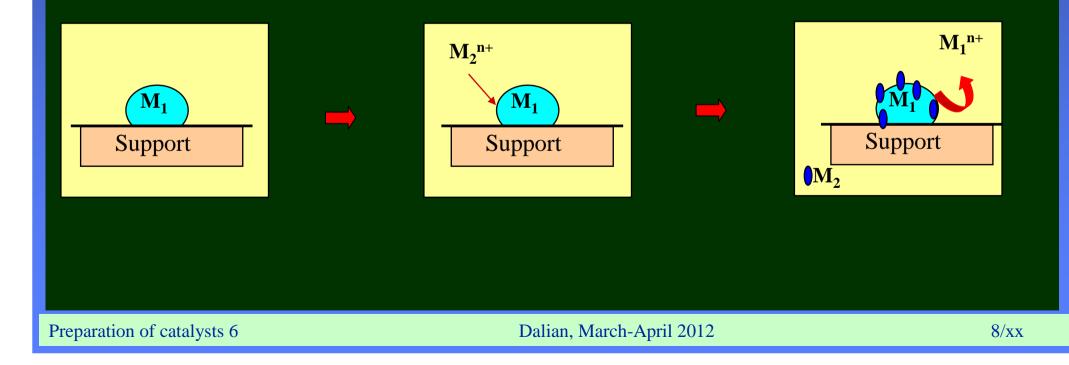
Two main ways:

- **1- Redox preparation**
- 2- Surface organometallic chemistry

Preparation of bimetallic catalysts

1) Introduction

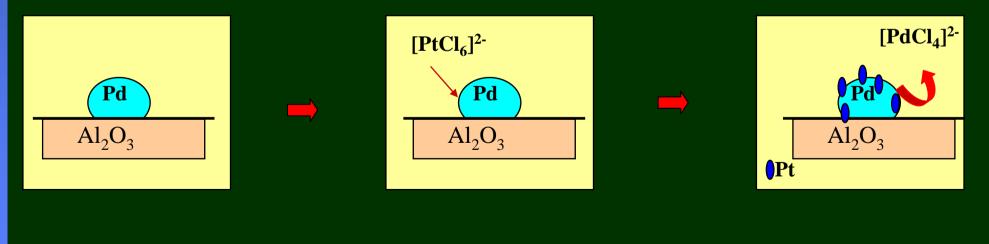
2) Redox preparation direct redox reaction refilling metal support redox reaction


3) surface organometallic chemistry (SOMC)

Redox preparation: direct redox reaction

Prepare metal M₁ on the support
Add the precursor of metal M₂

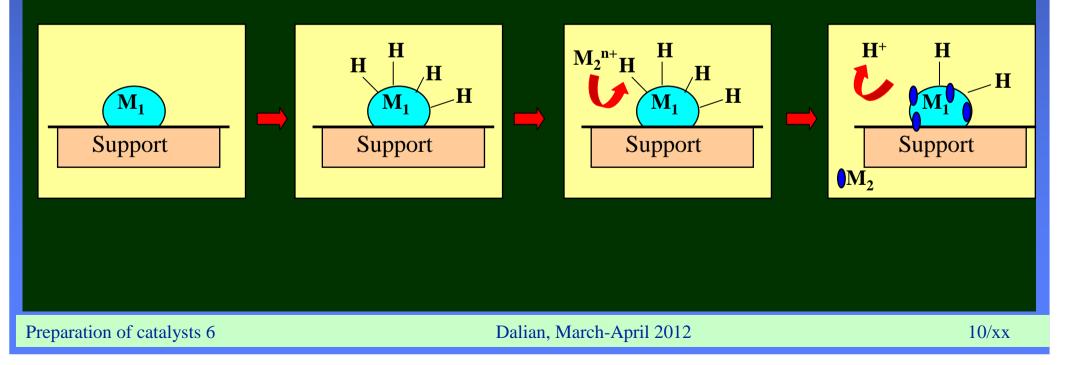
The redox reaction happens on the surface of metal M_1 $(M_1)-M_1(s) + M_2^{n+}(aq) \rightarrow M_1^{n+}(aq) + (M_1)-M_2(s)$


Thermodynamic condition? $E^{\circ}(M_2^{n+}/M_2) > E^{\circ}(M_1^{n+}/M_1)$

Redox preparation: direct redox reaction

Ex.: Pt-Pd/Al₂O₃ 1) Prepare a 1 wt.-% Pd/Al₂O₃ 2) Introduction of the solvent and N₂ (1 h) 3) Introduction of the solution of H₂PtCl₆ (contact time 20 min) 2 Pd(s) + [PtCl₆]²⁻(aq) + 2 Cl⁻(aq) \Rightarrow 2 [PdCl₄]²⁻(aq) + Pt(s) Is the thermodynamic condition on redox potential in agreement $E^{\circ}([PtCl_6]^{2-}/Pt) = 0.74 \text{ V} > E^{\circ}([PdCl_4]^{2-}/Pd) = 0.62 \text{ V}$

4) Washing
5) Drying at 120 °C
6) Reduction at 400 °C → 0.2%Pt-0.8%Pd/Al₂O₃

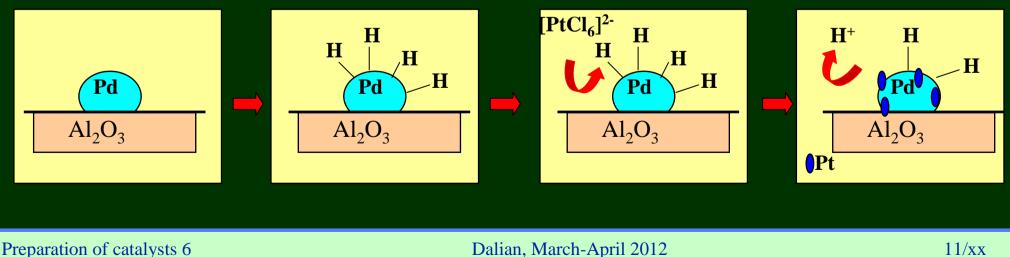

Preparation of catalysts 6

Redox preparation: refilling

- Prepare metal M₁ on the support
- Chemisorption of H₂ on metal M₁
- Add the precursor of metal \mathbf{M}_2

The redox reaction happens on the surface of metal M_1 $(M_1)-(H)_n(s) + M_2^{n+}(aq) \rightarrow (M_1)-M_2(s) + n H^+(aq)$

Thermodynamic condition? $E^{\circ}(M_2^{n+}/M_2) > E^{\circ}(H^+/H_2) = 0.00 V$

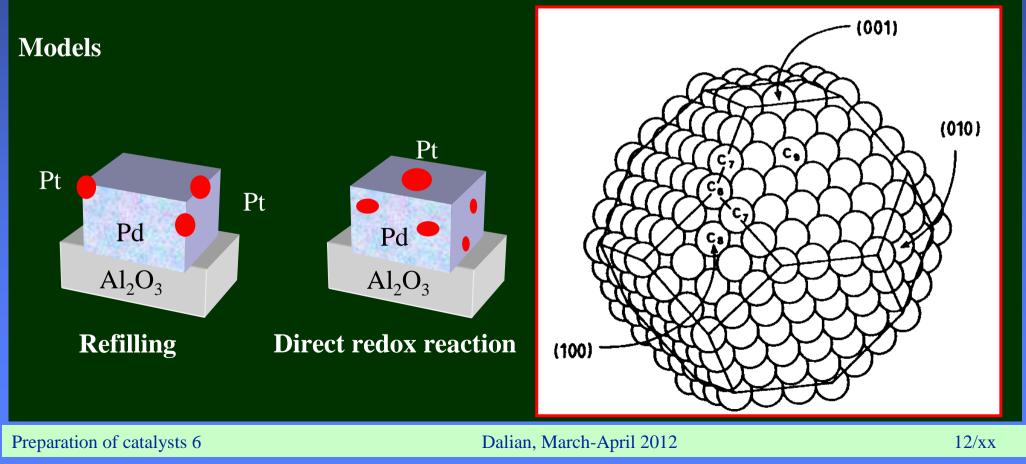


Redox preparation: refilling

Ex.: Pt-Pd/Al₂O₃ 1) Prepare a 1 wt.-% Pd/Al₂O₃ 2) Introduction of the solvent and N₂ (1 h) 3) Introduction of H₂ (1 h) 4) Evacuation of H₂ by N₂ flow 5) Introduction of the solution of H₂PtCl₆ (contact time 20 min) Pd-(H)₄(s) + [PtCl₆]²⁻(aq) \rightarrow Pd-Pt + 6 Cl⁻(aq) + 4 H⁺(aq) Is the thermodynamic condition on redox potential in agreement E°([PtCl₆]²⁻/Pt) = 0.74 V > E°(H⁺/H₂) = 0.00 V

4) Washing5) Drying at 120 °C

6) Reduction at 400 °C \rightarrow 0.2%Pt-1%Pd/Al₂O₃



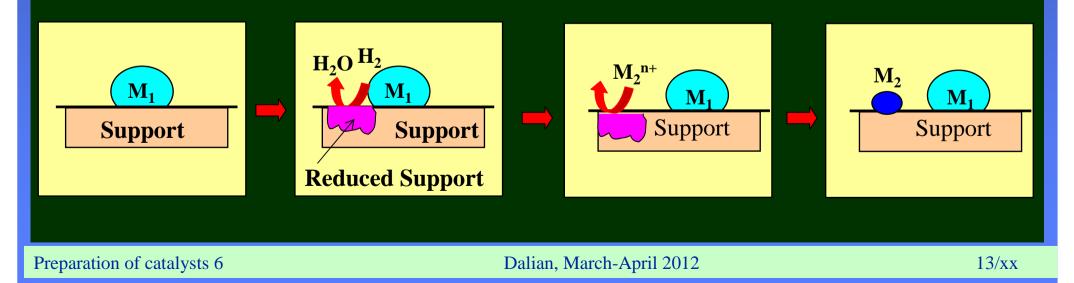
Redox preparation: Comparison direct redox reaction and refilling

Ex.: Pt-Pd/Al₂O₃ Application: Hydrogenation of aromatics to decrease their content in diesel fuel

→ Refilling ⇒ Pt deposited on low Pd coordination sites (edges and corners)

→ Direct redox reaction ⇒ Pt on high coordination sites (111 faces)

Redox preparation: Metal-support redox reaction (MSR)


```
The support or a part of the support is reducible
```

- Prepare metal \mathbf{M}_1 on the support
- Reduce a part of the support with H₂
 - support + $H_2(g) \rightarrow reduced support + H_2O(l)$
- Add the precursor of metal M₂

reduced support + $M_2^{n+}(aq) \rightarrow support + M_2(s)$

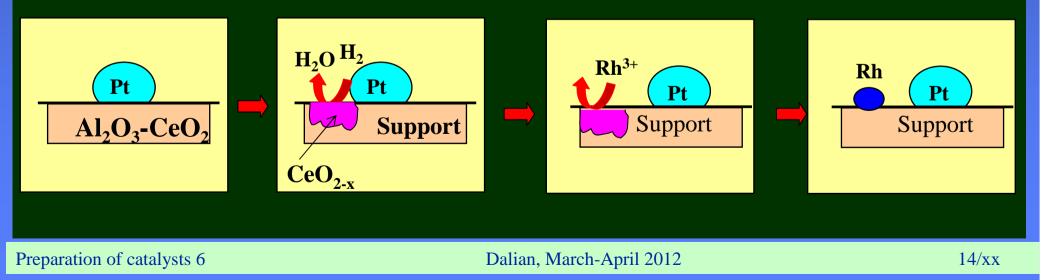
```
Thermodynamic condition?
E^{\circ}(M_2^{n+}/M_2) > E^{\circ}(support/reduced support)
```

\rightarrow M₁ and M₂ are separated

Redox preparation: Metal-support redox reaction (MSR)

Ex.: Rh-Pt/Al₂O₃-12%CeO₂

1) Prepare a 1 wt.-% Pt/Al₂O₃-12%CeO₂


- Impregnation of H₂PtCl₆,
- Calcination and reduction, at 500 °C

 $CeO_2(s) + x H_2(g) \rightarrow CeO_{2-x}(s) + x H_2O(g)$ (x close to 0.2)

2) Impregnation of RhCl₃

 $\begin{array}{l} 3 \ CeO_{2-x}(s) + 2x \ Rh^{3+}(aq) + 3x \ H_2O(l) \twoheadrightarrow 3 \ CeO_2(s) + 2x \ Rh(s) + 6x \ H^+(aq) \\ \mbox{Is the thermodynamic condition on redox potential in agreement} \\ E^{\circ}(Rh^{3+}/Rh) = 0.76 \ V > E^{\circ}(CeO_2/CeO_{2-x}) = -0.07 \ V \end{array}$

3) Final reduction at 500 °C \rightarrow 0.2%Rh-1%Pt/Al₂O₃-CeO₂

Redox preparation: Metal-support redox reaction (MSR)

Ex.: Rh-Pt/Al₂O₃-12%CeO₂
Compare with coimpregnated catalyst:
Co-impregnation of H₂PtCl₆ and RhCl₃
Calcination and reduction at 500 °C
→ Rh-Pt alloy formation

For metal-support redox reaction→ Pt and Rh particles are separated

Interest:

Three-way catalyst (TWC)

- Pt for hydrocarbon and CO oxidation
- Rh for NO_x reduction
- Al₂O₃ as support promoted by CeO₂

Objectives :

- Resistance to Pt-Rh alloy formation (no activity)
- Resistance to sulfur poisoning

Preparation of bimetallic catalysts

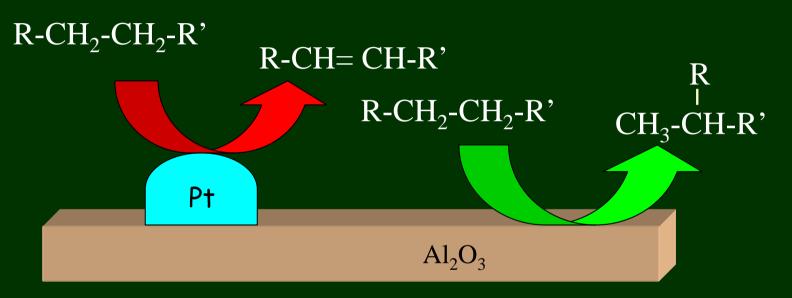
- 1) Introduction
- 2) Redox preparation
- 3) Surface organometallic chemistry (SOMC)
 - Pt catalysts modified by Ge
 - Rh catalysts modified by Ge

Surface organometallic chemistry (SOMC)

Two types of surface controlled reactions

- Redox reaction

Limitation linked by the redox potential value


- Surface Organometallic Chemistry (SOMC)

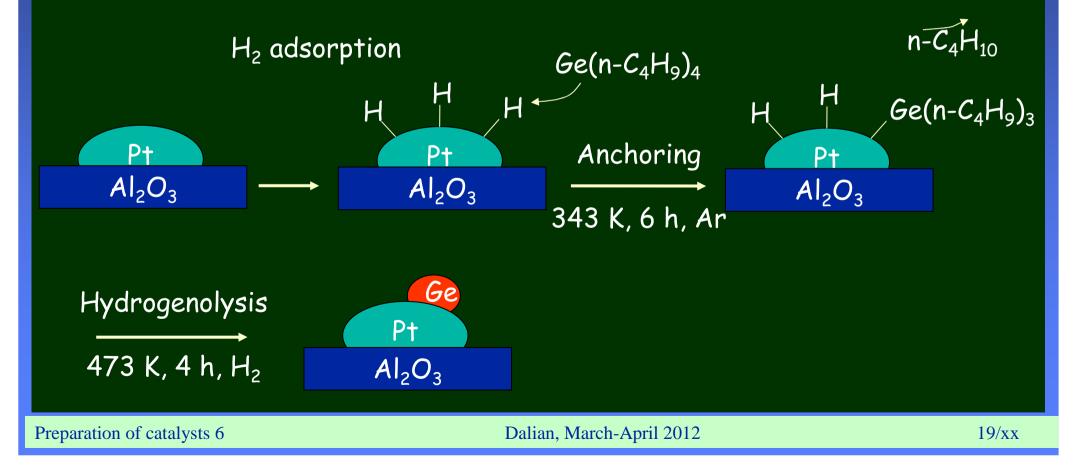
Use of organometallic precursors

Surface organometallic chemistry: Pt catalysts modified by Ge

Application: Reforming of gazoline Objectives:

- → To enhance deshydrogenation reactions (metal)
- → To favor isomerisation reaction (acidic support)

How to increase the catalyst performances?
→ add a second component to Pt
Promoting effect → 7 Activity 7 Selectivity


Stabilisation effect -> \(\) Coking deactivation 7 Regeneration ability

Preparation of catalysts 6

Surface organometallic chemistry: Pt catalysts modified by Ge

- 1) prepare a Pt/Al₂O₃ catalyst
- 2) adsorb hydrogen
- 3) react with Ge- $(n-C_4H_9)_4$
- 4) finish with hydrogenolysis \rightarrow formation of Ge-Pt/Al₂O₃ catalyst

Perform all the steps in an unique reactor \rightarrow *in-situ* preparation in a dynamic reactor

Surface organometallic chemistry: Rh catalysts modified by Ge

Catalyst preparation steps for in situ preparation 1) prepare a 1 % Rh/Al₂O₃ catalyst (reduction at 400 °C) 2) Add the solvent heptane (C₇H₁₆) under Argon 3) Introduce H₂ (1 h) at 25 °C 4) Evacuate H₂ by an argon flow 5) Introduce the solution of tetrabutylgermanium (6 h, 70 °C) 6) Wash with heptane 7) Dry at 120 °C 8) Reduce at 200 °C under H₂ → 1 % Rh - x % Ge/Al₂O3 x = 0.02 % (i.e. 200 ppm) to 0.15 %

Catalytic performances in 2,2,3-trimethylbutane hydrogenolysis

Particles $< 1.5 \text{ nm} \rightarrow \text{CH}_4 + \text{C6}$

Particles > 2.5 nm \rightarrow i-C4 + C3

