量子化学理论及其在催化反应中的应用

催化基础国家重点实验室 2007-7

Heterogeneous catalysis

Free energy

Worldwide turnover ~14 Trillion US\$ (2000)

> 90% of all chemicals pass a catalyst once during production

Catalysis: a playground on many levels

washcoat support

ceramic monolith cells ${\sim}500~\mu\text{m}$

ceramic monolith

washcoat macropores ~1-10 μm

single crystal surface

Supported Catalyst

Structural Parameters

Kinetic Effects

Multiscale Process

of surface properties and functions

K. Reuter, C. Stampfl and M. Scheffler,

in: Handbook of Materials Modeling, Part A. Methods,

(Ed.) Sidney Yip, Springer (Berlin, 2005).

http://www.fhi-berlin.mpg.de/th/paper.html

Sabatier principle

J.R. Jennings, *Ammonia Synthesis*, Plenum (1991)

M. Todorova *et al.*, Phys. Rev. Lett. 89, 096103 (2002)

Electronic structure theory calculations of surfaces

Tight-binding **Density-functional theory** Quantum chemical methods (> HF) (Quantum Monte Carlo)

- Forces (relaxation, vibrations, MD...)

- Total energy

- Electronic structure (...)

VS.

From micro to meso

(real world...?)

Outline

I. Introduction

- ① Density functional theory
- 2 Ab initio atomistic thermodynamics
- ③ Transition state theory

II. Examples

- A. Interaction between molecules and metal surface
- B. Manipulation of electron and reactivity: QSE
- C. Oxidation of Pt(332) (DFT + XPS)
- D. Reduction of nano-structural surface (DFT+STM)
- E. Bridging pressures and materials gap
- F. Ammonia Synthesis
- G. Selectivity
- H. Screening and rational catalysis design

Fast Guide to Density Functional Theory

Walter Kohn, Nobel Prize 1998

"Self-consistent Equations including Exchange and Correlation Effects" W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965)

Literal quote from Kohn and Sham's paper:"... We do not expect an accurate description of chemical binding."

研究方法:密度泛函理论(DFT)

General 'condensed-matter' Hamiltonian

 $(\hat{T}^e + \hat{T}^{ion} + \hat{V}^{e-e} + \hat{V}^{e-ion} + \hat{V}^{ion-ion})\Psi = E\Psi$ wavefunction $\Psi(\mathbf{r}_1, \cdots, \mathbf{r}_N; \mathbf{R}_{\mathbf{I}}, \cdots, \mathbf{R}_{\mathbf{M}})$ electronic coordinates $\mathbf{r}_{\mathbf{k}}, k = 1, \dots N$ ionic coordinates $\mathbf{R}_{\mathbf{I}}$, $I = 1, \cdots M$ $\hat{T}^e = \sum_{k=1}^{N} \frac{\mathbf{p}_k^2}{2m} \qquad \qquad \hat{T}^{ion} = \sum_{I=1}^{N} \frac{\mathbf{P}_I^2}{2M_I}$ $\hat{V}^{e-e} = \frac{1}{2} \frac{1}{4\pi\epsilon_0} \sum_{k \neq k'}^{N,N} \frac{e^2}{|\mathbf{r_k} - \mathbf{r_{k'}}|}$ $\hat{V}^{ion-ion} = \frac{1}{2} \frac{1}{4\pi\epsilon_0} \sum_{I \neq I'}^{M,M} \frac{Z_I Z_{I'}}{|\mathbf{R}_{\mathbf{I}} - \mathbf{R}_{\mathbf{I}'}|}$ $\hat{V}^{e-ion}(\mathbf{r_{k}}, \mathbf{R_{I}}) = \sum_{i=1}^{N} \sum_{j=1}^{M} \mathbf{v_{I}^{ion}}(|\mathbf{R_{I}} - \mathbf{r_{k}}|)$

Born-Oppenheimer approximation

convenient, frequently made approximation (but not compulsary) separation of variables \rightarrow parametric dependence on set of coord. $\{R_I\}$

$$\Psi(\mathbf{r_1},\cdots\mathbf{r_N};\mathbf{R_1},\cdots\mathbf{R_M}) = \sum_{\nu} \Lambda_{\nu}(\{\mathbf{R_I}\}) \Phi_{\nu,\{\mathbf{R_I}\}}(\mathbf{r_k})$$

electronic Schrödinger equation

$$H^{e}_{\{\mathbf{R}_{\mathbf{I}}\}}\Phi_{\nu,\{\mathbf{R}_{\mathbf{I}}\}}(\mathbf{r}_{\mathbf{k}}) = E^{e}_{\nu,\{\mathbf{R}_{\mathbf{I}}\}}\Phi_{\nu,\{\mathbf{R}_{\mathbf{I}}\}}(\mathbf{r}_{\mathbf{k}})$$
$$H^{e} = T^{e} + V^{e-e} + V^{e-ion}$$

frequently made approximations:

- neglect of non-adiabatic couplings (terms of order m/M_I)
- only one $\Lambda_{\nu} \neq 0$ (in a solid, this means neglect of electron-phonon couplings)

 \rightarrow electronic and nuclear degrees of freedom decouple !

Limitations of Born-Oppenheimer

- doesn't account for correlated dynamics of ionic and electronic coordinates
 Example: suprafluid He3, polaron-induced superconductivity
- breakdown of the restriction to a single ground-state Born-Oppenheimer surface *Example:* chemoluminescence
- breakdown of the adiabatic approximation
 Example: excitation of surface plasmons during scattering of an ion from a
 metal surface → time-dependent density functional theory

electronic many-particle Hamiltonian

$$\begin{bmatrix} \sum_{k=1}^{N} \frac{\nabla_k^2}{2m} + v^{(0)}(\mathbf{r_k}) + \sum_{k \neq k'}^{N,N} \frac{1}{2} W(\mathbf{r_k}, \mathbf{r'_k}) \end{bmatrix} \Phi(\mathbf{r_1}, \cdots \mathbf{r_N}) = E\Phi(\mathbf{r_1}, \cdots \mathbf{r_N})$$
$$W(\mathbf{r}, \mathbf{r'}) = \frac{e^2}{4\pi\epsilon_0 |\mathbf{r} - \mathbf{r'}|}$$
$$v^{(0)}(\mathbf{r}) = \sum_{I=1}^{M} v_I^{ion}(|\mathbf{R_I} - \mathbf{r}|)$$

still many (for a typical solid: 10²³) degrees of freedom

The many-particle problem can be solved only for small systems (atoms, molecules and clusters).

 \rightarrow wavefunction-based methods

- Configuration-interaction, Coupled Cluster method
- Quantum Monte Carlo method

Density Functional Theory

Hohenberg-Kohn theorem:

For any given external potential $v^{(0)}$, the wavefunctions can be considered as functionals in the space of ground state densities, *n*:

$$E_{v^{(0)}}[n] = \langle \Phi[n] | \hat{T}^e + \frac{1}{2} \hat{W} + \hat{v}^{(0)} | \Phi[n] \rangle$$

The energy functional is stationary at the ground state energy, and the true ground state density n_0 coincides with n at the stationary point. Therefore a universal functional \mathcal{F} exists with the property

$$E_{v^{(0)}}[n] = \mathcal{F}[n] + \int d\mathbf{r} \ v^{(0)}(\mathbf{r})n(\mathbf{r})$$

Proof:

 $\begin{array}{ll} {}^{\prime}\Phi[n] \mapsto n' \colon & \text{trivial} \\ {}^{\prime}n \mapsto \Phi[n]' \colon & \text{Note that } v_{ext} \to n \stackrel{\text{Raleigh}-\text{Ritz}}{\mapsto} \Phi[n] \\ & \text{Also: } v_{ext} \mapsto \Phi[n]. \text{ Thus, } E_{v^{(0)}}[n] \text{ is uniquely defined.} \end{array}$

Kohn-Sham theorem

idea: decompose $\mathcal{F}[n]$ into its major contributions $\mathcal{F}[n] = T_0[n] + \frac{1}{2} \int \int d\mathbf{r} \, d\mathbf{r}' \, n(\mathbf{r}) W(\mathbf{r}, \mathbf{r}') n(\mathbf{r}') + E_{XC}[n]$ T_0 : kinetic energy of a system of non-interacting particles $E_{XC}[n]$ exchange-correlation energy defined as 'the rest' \rightarrow approximations $V_{XC}[n](r) := \frac{\delta E_{XC}[n]}{\delta n(r)}$: exchange-correlation potential

popular approximations for $E_{XC}[n]$:

•

- local-density approximation (LDA)
- generalized gradient approximations (GGAs)
- exact exchange formalism (EXX)

Kohn-Sham Hamiltonian

To find the stationary point, we do variations at fixed $N = \int d\mathbf{r} n(\mathbf{r})$, which leads to

$$\frac{\delta E_{v^{(0)}}}{\delta n(\mathbf{r})} = \mu$$
 (Lagrange parameter)

If we write the density as a sum over single-particle functions,

$$n(\mathbf{r}) = \sum_{\mathbf{j}=1}^{\mathbf{N}} \sum_{\mathbf{k} \in \mathbf{BZ}} |\mathbf{'}_{\mathbf{j},\mathbf{k}}(\mathbf{r})|^{2},$$

the variational principle $\delta E_{v^{(0)}}[\varphi^*]/\delta \varphi^*(\mathbf{r}) = \mathbf{0}$ leads to the Kohn-Sham equations

$$\left(-\frac{\nabla^2}{2m} + V_{\text{eff}}[n](\mathbf{r})\right)\varphi_{j,\mathbf{k}}(\mathbf{r}) = \epsilon_{j,\mathbf{k}}\varphi_{j,\mathbf{k}}(\mathbf{r})$$

with the effective potential

$$V_{\text{eff}}[n](\mathbf{r}) = v_{R_I}^{(0)}(\mathbf{r}) + \int d\mathbf{r}' \frac{e^2 n(\mathbf{r}')}{4\pi\epsilon_0 |\mathbf{r} - \mathbf{r}'|} + \frac{\delta E_{XC}[n]}{\delta n}(\mathbf{r}).$$

How can we specify E_{XC} ?

rs

At this point, we need to make approximations to get further. *Example:* local density approximation (LDA)

$$\begin{split} E_{\rm XC}[n(\mathbf{r})] &= \int d\mathbf{r} \; e_{\rm XC}[n(\mathbf{r})] \; n(\mathbf{r}) \\ &\approx \int d\mathbf{r} \; [e_X^{hom}(n(\mathbf{r})) + e_C^{hom}(n(\mathbf{r}))] \; n(\mathbf{r}) \\ e_X^{hom}(n) &= -(81/64\pi)^{1/3} n^{1/3}(\mathbf{r}) \\ e_C^{hom}(n) &= \begin{cases} -0.1423(1+1.0529\sqrt{r_s}+0.3334r_s)^{-1} & \text{if} \; r_s \ge 1, \\ -0.0480+0.0311 \ln r_s - 0.0116r_s + 0.002 \; r_s \; \ln r_s \\ & \text{if} \; r_s < 1. \end{cases} \\ r_s := (4\pi n(\mathbf{r})/3)^{-1/3} \quad \text{Wigner-Seitz radius} \\ \text{[see, e.g. J. Perdew & A. Zunger, Phys. Rev. B 23 5048 (1981)]} \end{split}$$

The total energy (for static ions)

two equivalent definitions:

$$E_{tot}[n] = T_0[n] + \int d\mathbf{r} \, v_{\mathbf{R}_i}^{(0)}(\mathbf{r}) n(\mathbf{r}) + \frac{1}{4\pi\epsilon_0} \int d\mathbf{r} \int d\mathbf{r}' \, \frac{e^2 n(\mathbf{r}) n(\mathbf{r}')}{2|\mathbf{r} - \mathbf{r}'|} + E_{XC}[n] + V_{\mathbf{R}_I}^{ion-ion}$$

$$E_{tot}[n] = \sum_{j=1}^N \sum_{\mathbf{k} \in BZ} \varepsilon_{j,\mathbf{k}} + \Delta E^{e-e}[n] + \Delta E_{XC}[n] + V_{\mathbf{R}_I}^{ion-ion}$$

$$\Delta E^{e-e}[n] = -\frac{1}{4\pi\epsilon_0} \int d\mathbf{r} \int d\mathbf{r}' \, \frac{e^2 n(\mathbf{r}) n(\mathbf{r}')}{2|\mathbf{r} - \mathbf{r}'|} = -E^{e-e}[n]$$

$$\Delta E_{XC}[n] = E_{XC}[n] - \int d\mathbf{r} \, V_{XC}[n](\mathbf{r}) \mathbf{n}(\mathbf{r})$$

 E_{tot} is stationary with resp. to variations of *n* around n_0 , but the individual terms are not !

Concepts when solving Schrödingers-equation in solids

Basic steps in an electronic structure calculation

- guess a starting charge density (e.g. superposition of atomic densities)
- 2. set up the Hamiltonian for this charge density (usually done in a small, preliminary basis set)
- 3. diagonalize this approximative Hamiltonian
- 4. use the eigenvalues and wavefunctions to set up a new charge density
- 5. try to improve the wavefunctions using the variational principle for E_{tot} , thereby simultaneously approaching self-consistency

$$n^{(i-1)} \to V_{eff}^{(i-1)} \to \varepsilon_{j,\mathbf{k}}^{(i-1)}, \varphi_{j,\mathbf{k}}^{(i-1)} \to n^{(i)} \to V_{eff}^{(i)} \to \varepsilon_{j,\mathbf{k}'}^{(i)}, \varphi_{j,\mathbf{k}'}^{(i)} \cdots$$

Surface models: slabs vs. clusters

VS.

<u>Cluster geometries:</u>

- + very cheap for small clusters (local basis sets)
- + ideal for local aspects (defects etc.)
- slow convergence with cluster size (embedding etc.)

Supercell geometries:

- + proper surface electronic structure (band structure)
- + good convergence with slab thickness ("semi-infinite")
- + suitable for plane wave basis sets
- artificial lateral periodicity: "ordered arrays"
- inherently expensive (large systems)

Basis Sets for Solids

- plane waves (pseudo potentials)
- space partitioning (augmentation) methods
 - LMTO (linear muffin tin orbitals)
 - ASA approx., linearized numerical radial function
 - + Hankel- and Bessel function expansions
 - ASW (augmented spherical wave)
 - similar to LMTO
 - FP-LMTO (full-potential LMTO)
 - similar to LAPW, space partitioned with non-overlapping spheres
 - KKR (Kohn, Koringa, Rostocker method)
 - solution of multiple scattering problem, Greens function formalism
 - equivalent to APW
 - (L)APW (linearized augmented plane waves)
- LCAO methods
 - Gaussians, Slater, or numerical orbitals, often with PP option)

pseudopotential plane wave methods

• plane waves form a "complete" basis set, however, they "never" converge due to the rapid oscillations of the atomic wave functions χ close to the nuclei

• let's get rid of all core electrons and these oscillations by replacing the strong ion-electron potential by a much weaker (and physically dubious) *pseudopotential*

How to compute observables

A) energy differences

between different structures, formation energy of defects, heat of adsorption, ...

B) derivatives of the thermodynamic potentials E_{tot} , F or GFor simplicity's sake, we consider a system with constant volume at T = 0: $F(T = 0, V) = E_{tot}(V)$

• pressure
$$p = -\frac{\partial E_{tot}(V)}{\partial V}$$

• bulk modulus
$$B = V \frac{\partial^2 E_{tot}(V)}{\partial V^2}$$

• forces \vec{F}_I on atom *I* (in electronic ground state)

$$\vec{F}_{I} = -\frac{\partial E_{tot}}{\partial \vec{R}_{I}} = -\sum_{j}^{N} \langle \varphi_{j,\mathbf{k}} | \partial H / \partial \vec{R}_{I} | \varphi_{j,\mathbf{k}} \rangle$$

due to the Hellmann-Feynman theorem

How to compute observables

- **C**) second derivatives *Examples:*
 - 1. force constant matrix
 - $\frac{\partial E_{tot}}{\partial \vec{R}_i \partial \vec{R}_j}$

ightarrow calculation of phonon spectrum, vibrational entropy, \dots

2. particle number fluctuations

 \rightarrow chemical softness and hardness

$$s(\mathbf{r}) = \left(\frac{\partial n(\mathbf{r})}{\partial \mu}\right)\Big|_{v,T} = \int \left(\frac{\delta^2 E_{tot}}{\delta n(\mathbf{r})\delta n(\mathbf{r}')}\right)^{-1} d\mathbf{r}'$$
$$h(\mathbf{r}) = \frac{1}{2} \left(\frac{\partial \mu}{\partial n(\mathbf{r})}\right)\Big|_{v,T} = \int \frac{\delta^2 E_{tot}}{\delta n(\mathbf{r})\delta n(\mathbf{r}')} \frac{n(\mathbf{r}')}{2N} d\mathbf{r}'$$

Note: When calculating second derivatives, the response of the density to the perturbation must be taken into account. \rightarrow Density Functional Perturbation Theory

What materials properties are accessible to calculation?

- structural properties *Examples:* structural phase transitions, surface reconstructions **yes**
- elastic properties *Examples:* bulk modulus, C_{11} , C_{12} , C_{44} , ...
- chemical properties
 Examples: thermochemical stability of compounds, reactivity of surfaces
 yes
- transport properties *Examples:* conductance of nanowires, magneto-resistence

developing field

yes

optical/spectroscopic properties
 Examples: photoemission spectra, cross sections for light absorption
 topic beyond Kohn-Sham theory → time-dependent DFT

many other applications

Bridging scales: Ab initio atomistic thermodynamics

General idea

Motivation:

- extend length scale
- consider finite temperature effects
- Approach:
 - separate system into sub-systems (exploit idea of reservoirs!)
 - calculate properties of sub-systems separately (cheaper...)
 - connect by implying equilibrium between sub-systems

Drawback:

- no temporal information
 - ("system properties after infinite time")
- equilibrium assumption

I. Connecting thermodynamics, statistical mechanics and density-functional theory

> *Statistical Mechanics,* D.A. McQuarrie, Harper Collins Publ. (1976)

Introduction to Modern Statistical Mechanics, D. Chandler, Oxford Univ. Press (1987)

M. Scheffler in *Physics of Solid Surfaces 1987*, J. Koukal (Ed.), Elsevier (1988)

Thermodynamics in a nutshell

Internal energy(U) $E^{tot}(S,V)$ Enthalpy $H(S,p) = E^{tot} + pV$ (Helmholtz) free energy $F(T,V) = E^{tot} - TS$ Gibbs free energy $G(T,p) = E^{tot} - TS + pV$

Potential functions

- Equilibrium state of system minimizes corresponding potential function

- In its set of variables the total derivative of each potential function is simple (derive from 1st law of ThD: $dE^{tot} = dQ + dW$, dW = -pdV, dQ = TdS)

- Chemical potential $\mu = (\partial G / \partial n)_{T,p}$ is the cost to remove a particle from the system. Homogeneous system: $\mu = G/N (= g)$ i.e. Gibbs free energy per particle

Link to statistical mechanics

A many-particle system will flow through its huge phase space, fluctuating through all microscopic states consistent with the constraints imposed on the system. For an isolated system with fixed energy E and fixed size V,N (microcanonic ensemble) these microscopic states are all equally likely at thermodynamic equilibrium (i.e. equilibrium is the most random situation).

- Partition function $Z = Z(T, V) = \sum_{i} \exp(-E_i / k_B T) \implies$ Boltzmann-weighted sum over all possible system states

$$\Rightarrow$$
 F = - $k_B T \ln(Z)$

- If groups of degrees of freedom are decoupled from each other (i.e. if the energetic states of one group do not depend on the state within the other group), then

$$Z_{\text{total}} = \left(\sum_{i} \exp(-E_{i}^{\text{A}} / k_{\text{B}} T) \right) \left(\sum_{i} \exp(-E_{i}^{\text{B}} / k_{\text{B}} T) \right) = Z^{\text{A}} Z^{\text{B}}$$

 \Rightarrow $F_{\text{total}} = F^{A} + F^{B}$

e.g. electronic ↔ nuclear (Born-Oppenheimer) rotational ↔ vibrational

- N indistinguishable, independent particles: $Z_{\text{total}} = 1/N! \left(Z_{\text{one particle}} \right)^N$

Computation of free energies: ideal gas I

$$Z = 1/N! \left(X_{ucl} Z_{el} Z_{trans} Z_{rot} Z_{vib} \right)^{N}$$

$$\Rightarrow \mu(T,p) = G / N = (F + pV) / N = (-k_B T \ln(Z) + pV) / N$$

i) Electr. free energy $Z_{el} = \sum_{i} \exp(-E_i^{el} / k_B T)$ Typical excitation energies $eV >> k_B T$, $\Rightarrow F_{el} \approx E^{tot} - k_B T \ln(I_{spin})$ Typical excitation energies $eV >> k_B T$, only (possibly degenerate) ground state contributes significantly

> Required input: Internal energy E^{tot} Ground state spin degeneracy I_{spin}

ii) Transl. free energy $Z_{\text{trans}} = \sum_{k} \exp(-\hbar k^2 / 2mk_B T)$ Particle in a box of length $L = V^{1/3}$ $(L \rightarrow \infty) \implies Z_{\text{trans}} \approx V (2\pi mk_B T / \hbar^2)^{3/2}$

Required input: Particle mass *m*

Particle in box

 $\lambda_n = 2L/n$

$$E_n = n^2 \frac{h^2}{8mL^2}$$

1

$$\psi(z) \propto \sin\left(\frac{n\pi z}{L}\right).$$
Computation of free energies: ideal gas II

 $\begin{array}{ll} \underline{\text{iii) Rotational free energy}} & Z_{\text{rot}} = \sum_{J} (2J+1) \exp(-J(J+1)B_{\text{o}} / k_{B}T) & \text{Rigid rotator} \\ \\ (\text{Diatomic molecule}) \Rightarrow & Z_{\text{rot}} \approx -k_{B}T & \ln(k_{B}T/\sigma B_{\text{o}}) & \sigma = 2 & (\text{homonucl.}), \\ & = 1 & (\text{heteronucl.}), \\ & B_{\text{o}} \sim md^{2} & (d = \text{bond length}) \end{array}$

Required input: Rotational constant B_0 (exp: tabulated microwave data)

iv) Vibrational free energy $Z_{vib}^{M} = \sum_{i=1}^{M} \sum_{n} \exp(-(n + \frac{1}{2})\hbar\omega_i / k_B T)$ Harmonic oscillator $\Rightarrow \mu_{vib}(T) \stackrel{M}{=} \sum_{i=1}^{M} \frac{1}{2} \hbar\omega_i + k_B T \ln(1 - \exp(-\hbar\omega/k_B T))$

Required input:M fundamental vibr. modes ω_i Calculate dynamic matrix $D_{ij} = (m_i m_j)^{-\frac{1}{2}} (\partial^2 E^{\text{tot}} \partial r_i \partial r_j)_{Leq}$ Solve eigenvalue problem $\det(D - 1 \ \omega_i^2)$

Computation of free energies: ideal gas III

Alternatively:

 $\Delta \mu(T, p) = \Delta \mu(T, p^{\circ}) + kT \ln(p/p^{\circ})$ and $\Delta \mu(T, p^{\circ} = 1 \text{ atm})$ tabulated in thermochem. tables (e.g. JANAF)

Computation of free energies: solids

	$G(T,p) = E^{\text{tot}} + F^{\text{trans}} + F^{\text{rot}} + F^{\text{vib}} + F^{\text{conf}}$	+ <i>pV</i>
₽trans ₽ ^{rot}	Translational free energy Rotational free energy	$\propto 1/M \rightarrow 0$
рV	V = V(T,p) from equation of state, varies little	\rightarrow 0 for <i>p</i> < 100 atm
Fconf	Configurational free energy	\rightarrow Trouble maker
Etot	Internal energy	$\rightarrow DFT$
F ^{vib}	Vibrational free energy	→ phonon band structure
	<i>E</i> ^{tot} , <i>F</i> ^{vib} use differences use simple models to approx. <i>F</i> ^v	^{ib} (Debye, Einstein)
	\Rightarrow Solids (low T): $G(T,p) \sim E^{tot} + F^{conf}$	

II. Starting simple: Equilibrium concentration of point defects

> Solid State Physics, N.W. Ashcroft and N.D. Mermin, Holt-Saunders (1976)

Isolated point defects and bulk dissolution

On entropic grounds there will always be a finite concentration of defects at finite temperature, even though the creation of a defect costs energy ($E_D > 0$).

How large is it?

Internal energy: Config. entropy: $E^{\text{tot}} = n E_{\text{D}}$ $F^{\text{conf}} = k_{\text{B}}T \ln Z(n)$ with $Z = \frac{N (N-1) \dots (N-n-1)}{1 \cdot 2 \cdot \dots \cdot n} = \frac{N!}{(N-n)!n!}$

Minimize free energy:

 $(\partial G/\partial n)_{T,p} = \partial/\partial n_{T,p} (E^{\text{tot}} - F^{\text{conf}} + pV) = 0$

Forget *pV*, use Stirling: In $N! \approx N(\ln N-1) \Rightarrow$

$$n/N = \exp(-E_{\rm D}/k_{\rm B}T)$$

N sites,

n defects (n << N)

III. Slightly more involved: Effect of a surrounding gas phase on the surface structure and composition

E. Kaxiras et al., Phys. Rev. B 35, 9625 (1987)

X.-G. Wang et al., Phys. Rev. Lett. 81, 1038 (1998)

Surface thermodynamics

A surface can never be alone: there are always "two sides" to it !!! solid – gas solid – liquid solid – solid ("interface")

Phase I / phase II alone (bulk):

 $\begin{array}{l} G_{\mathrm{I}} = N_{\mathrm{I}} \; \mu_{\mathrm{I}} \\ G_{\mathrm{II}} = N_{\mathrm{II}} \; \mu_{\mathrm{II}} \end{array}$

Total system (with surface):

 $G_{\mathsf{I+II}} = G_\mathsf{I} + G_\mathsf{II} + \Delta G_\mathsf{surf}$

γA

$$\gamma = 1/A \left(G_{I+II} - \sum_{i} N_{i} \mu_{i} \right)$$

Surface tension (free energy per area)

Example: Surface in contact with oxygen gas phase

$$\gamma_{\text{surf.}} = 1/A \left[G_{\text{surf.}}(N_{\text{O}}, N_{\text{M}}) - N_{\text{O}} \mu_{\text{O}} - N_{\text{M}} \mu_{\text{M}} \right]$$

Use reservoirs: i) μ_{O} from ideal gas ii) $\mu_{M} = g_{M}^{bulk}$

Forget about F^{vib} and F^{conf} for the moment: $\gamma(T,p) \approx (E^{(\text{slab})}_{\text{surf.}} - N_{\text{M}} E^{\text{ulk}}_{\text{M}})/A - N_{\text{O}} \mu_{\text{O}}(T,p) /A$

Surface Adsorption

Oxygen bond strength at basal TM surfaces

Strong variation with element and coverage

M. Todorova et al., Phys. Rev. Lett. 89, 096103 (2002)

Theory of adsorption : Newns-Anderson model

 \approx a generalization of molecular orbital (MO) schemes to finite bands

D.M. Newns, Phys. Rev. 178, 1123 (1969); P.W. Anderson, Phys. Rev. 124, 41 (1961)

Theory of adsorption: Newns-Anderson model cont'd And Hammer-Norskov Model

Filling of *d*-band occupies antibonding O-M states

Theory of adsorption: Newns-Anderson model cont'd

Achievements:

- qualitative electronic structure at the surface
- correct trend in adsorption strength over TM series
- reactivity patterns \rightarrow *d*-band center (Hammer/Nørskov)

Failures:

- no adsorbate induced reconstructions
- no site specificity (\rightarrow reactivity theory, HSAB, covalent/ionic)
- no lateral interactions

Importance of intermediate bond strength

Low bond strength: no incentive to form/ bind intermediates High bond strength: no incentive to form products

A good catalyst binds intermediates with medium bond strength

Sabatier principle (1913)

Two dimensional ultra-thin film a playground for manipulation of electron and chemistry

Catalytically Active Gold: From Nano-particles to Ultrathin Films

Chen & Goodman Acc. Chem. Res. (2006)

Origin:

- 1. Low-Coordination Sites small may not be always good
- 2. Electronic Effects
- 3. Quantum size effects

"Unfortunately the data in the literature and the discussion vary widely; therefore the nature of the active Au species or structure or site remains unclear."

-- W. Goodman

Lack of precise preparation and characterization in general

Supported Catalyst

Structural Parameters

Kinetic Effects

Quantum Size Effects in Nanomaterials

Electron Confinement in ultra thin film: Quantum Size Effect

P.M. Echenique, J.B. Pendry, J. Phys. C: Solid State Phys. 11 (1978) 2056.

Quantum Well States from Quantum Mechanics

Bound states in infinite or finite potential wells

量子受限薄膜体系

 λ_{F} 和 v_{F} 与价电子数量和能带色散有关!

两个量子化电子态的能量差:

$\Delta = \pi \hbar v_F$	/ Nd
---------------------------	------

薄膜厚度从N到N+1时的能谱移动:

 $\delta = 2d\Delta/\lambda_F$

metal/metal	metal/semicondutor
Ag/Cu(111)	Pb/Si(111)
Pb/Cu(111)	Pb/Ge(111)
Ag/Ni(111)	Pb/Ge(100)
Ag/Fe(100)	Ag/Si(111)
	AI/Si(111)
	Ag/GaAs(110)

通过改变薄膜的厚度来调控薄膜电子态及其催化性能

Superconductivity Modulated by Quantum Size Effect: Pb/Si(111)

Q. K. Xue et. al Science 306, 1915(2004)

Tuning Chemical Reactivity by Quantum Well States

金属表面化学反应活性的量子振荡

Ŷ 铅岛样品具有相同的结构、组成,唯一变化的参量是薄膜厚度!
 ↓ 氧气在的Pb薄膜的表面吸附和氧化反应随着薄膜厚度的变化出现量子振荡现象

X. C. Ma, W. X. Li, Q. K. Xue et al, Proceeding of National Academy of Sciences (2007)

金属表面化学反应活性的量子振荡

Effects of quantum well states: Fe adatom on Pb/Si

n (Fe islands)_{11,13,15} > n (Fe islands)_{10,12,14,16}

Density oscillation of Fe islands on QWS Pb films

L.Y. Ma, J.F. Jia, Q.K. Xue, et al., Phys. Rev. Lett. 97 (2006) 266102.

隧道扫描电镜(STM) 测量

dI/dV

Symmetry broken at surface affects Pz orbital Gamma is dominated by Pz orbial

Pb(111) 膜的UPS、及其随厚度的调制

2

15

角分辨UPS谱 (Γ:发向UPS)

只有在发向UPS(布里渊区中心处)表现 出量子尺寸调控效应 (Pz orbital)

表面电子密度的空间延展性/衰减长度

QSE对化学反应活性调制的起源

- 振荡的原因:费米能级处态密度以及电子波函数在真空衰减的快慢随膜的厚度调制而变化
- 二维薄膜原子轨道的对称性破缺决定了薄膜的量子尺寸效应
 及其表面活性

0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.46

0.48

电子在动量空间的三维衰减图

在动量空间Gamma点处电子衰减最慢, 其相应的轨道对称性为P_z轨道。

量子尺寸效应: ^{局域功函数、HOQWS & LUQWS (STM)}

4

15

$$\phi_{LWF} = 0.952 [d \ln I/dz]^2$$
$$\approx 0.952 [d \ln \rho/dz]^2$$

XPS + DFT

Oxidation of Pt(332) and CO Oxidation

Effect of Step Edge

NO Dissociation at Ru Steps

T.Zambelli, J. Wintterlin, J. Trost, G. Ertl, Science **273**, 1688 (1996).

- High ϵ_d 's at steps.
- More active metal atoms.

Hammer (1999).

X-ray Photoelectron Spectroscopy (XPS)

$$hv = E_{kin} + \phi + \mathcal{E}_c$$
$$\phi = E_V - E_F$$

Core-electron Energy

$$\varepsilon_c = E(n-1) - E(n)$$

E(n) / E(n-1): total energy before / after core excited (frozen core approximation, valence electron relaxation included)

Surface Core Level Shift

$$\Delta_{SCLS} = \varepsilon_c^{surf} - \varepsilon_c^{bulk}$$

Final state effect included

Element specific and geometric sensitive Fingerprint as adsorption site and oxidation state
Clean surfaces Rh(553)

Rh 3d 5/2 from DFT

	SCLS (meV)
S	0
U	530
T-1	310
T-2	350
T-3	370

CO Adsorption on Pt(111)

Top Bridge

CO Adsorption on Pt(332)

J.G. Wang, W. X. Li et al, Phys. Rev. Lett. 95, 256102 (2005)

O₂ Adsorption on Pt(332) and Pt(111)

Oxygen 1s binding energy

O1s binding energy: 529.75 eV for Pt(111) 529.55 eV for Pt(332) Difference: 0.20 eV

Pt(111) saturated at 0.25 ML Pt(332) saturated at 0.42 ML

1D PtO₂ along Step Edge of Pt(332)

CO Oxidation on O pre-covered Pt(332)

CO

reaction negligible at 220 K on Pt(332), instead of 270 K on Pt(111)

J.G. Wang, W. X. Li et al, Phys. Rev. Lett. 95, 256102 (2005)

CO Oxidation on Pt(332)

Initial State

Reaction Barrier for CO oxidation:0.60 eV for 1D PtO2 $(E_b=0.77 \text{ eV}$ for step oxygen)0.71 eV for terrace oxygen ($E_b=0.54 \text{ eV}$ for terrace oxygen)

DFT + Fast STM

Two step reaction on a nanostructured surface: (10×2)-0/Rh(110)

high local oxygen coverage

strained

nanostructured

C. Africh, F. Esch, W. X. Li, M. Corso, B. Hammer, R. Rosei, and G. Comelli1, *Phys. Rev. Lett.* 93, 126104 (2004)

Formation of the (10×2) structure

29L O₂ (200K)

annealed

to 530 K

(1×1)

+0.5ML O

T>100° C

(2×2)p2mg

 $8 \times 9 \text{ nm}^2$

- (1×2) *missing row* - O *threefold* in *zig-zag* (10×2)

40×30 nm²

Characteristics of the (10×2) structure

(2×1)p2mg

Height

Two-Step Reaction

Room temperature, partial pressure of H₂: 10⁻⁸ mbar

40x30nm² Acquisition time: 35 s per image

1st-step reaction

2nd-step reaction

Brighter areas where zig-zag oxygen reacted off

 $150 \times 150 \text{ Å}^2$

Final surface: clean, segmented (1x2)

2nd oxygen removal:

- homogeneous nucleation

(2×2)p2mg segmented

1st oxygen removal:

- reaction front
- zig-zag oxygen left
- strain removal

H₂ Dissociation on Rh(110)-(1x2) Barrier: 0.09 eV

1st Step eaction

H₂ dissociation barrier:
island edge: 0.23 eV
middle part and RV between segments: larger than 0.67 eV

1st Step eaction

H₂ dissociation barrier:
island edge: 0.23 eV
middle part and RV between segments: larger than 0.67 eV

OH formation barrier:

- island edge: 0.78 eV
- middle part and RV between segments: 0.92 eV and 1.16 eV

Wavefront Formation

O's Stability: •Site A: 1.85 eV •Site B: 1.85 eV •Site C: 1.36 eV •Site D: 1.98 eV

zig-zag structure preferred

Wavefront Formation

2nd Step Reaction

2nd oxygen removal: - homogeneous nucleation H2 dissociates barrier: 0.12 eV H atom can only adsorb between the ridge

Bridge "pressure" and "materials" gap

First-principles, atomistic thermodynamics

Pressure / materials gap

Oxidation catalysis:

possible oxide formation at the catalyst surface

Low vs. high temperatures

Finite dosage vs. gas phase reservoir

H. Over et al., Science 287, 1474 (2000)

Ordered Structures: O/Ag(111)

(4x4)-0 (Carlisle et al, PRL, 2000)

Schmid et al, Phy. Rev. Lett. 96, 146102 (2006)

Schnadt et al, Phy. Rev. Lett. 96, 146101 (2006)

From UHV to Real World (Theoretical Recipes) Ab initio atomistic thermodynamics

Gibbs Formation Energy of Adsorption

 $G = 1/A \left[G_{surf.}(N_{O}, N_{M}) - N_{O} \mu_{O} - N_{M} \mu_{M} \right]$ $O_{2} gas$ Use reservoirs: $i) \mu_{O} \text{ from ideal gas}$ $ii) \mu_{M} = g_{M}^{bulk}$

Forget about F^{vib} and F^{conf} for the moment: $\gamma(T,p) \approx (E^{(\text{slab})}_{\text{surf.}} - N_{\text{M}} E^{\text{ulk}}_{\text{M}})/A - N_{\text{O}} \mu_{\text{O}}(T,p) /A$

Average Gibbs free energy of adsorption

W. X. Li et al. Phys. Rev. Lett. 90, 256102 (2003)

Pressure – Temperature Phase Diagram: O/Ag(111) bases on ab initio atomistic thermodynamics

W. X. Li et al. Phys. Rev. Lett. 90, 256102 (2003)

Can DFT do more than we expect ?

Ammonia Synthesis from First Principles Calculations

Honkala et al. Science **307**,555 (2005)

Catalytic ammonia synthesis $N_2+3H_2 \rightarrow 2NH_3$

Ozaki and Aika, Catalysis 1 (Anderson and Boudart, Ed.)

Reaction mechanism

Reaction mechanism

At equilibrium

$$N_{2} + 2^{*} \rightarrow 2N^{*}$$

$$N^{*} + H^{*} \leftrightarrow NH^{*} + *$$

$$NH^{*} + H \leftrightarrow NH_{2}^{*} + *$$

$$NH_{2}^{*} + H^{*} \leftrightarrow NH_{3}^{*} + *$$

$$NH_{3}^{*} \leftrightarrow NH_{3} + *$$

$$H_{2} + 2^{*} \leftrightarrow 2H^{*}$$

Rate-limiting step

Ammonia synthesis over Ru

Logadottir, Nørskov, J. Catal. 220, 273-279 (2003)

Steps do everything

Au decorates steps: Hwang, Schroder, Gunther, Behm, Phys. Rev. Lett. 67, 3279 (1991)

Dahl, Logadottir, Egeberg, Larsen, Chorkendorff, Törnqvist, Nørskov, Phys.Rev.Lett. 83, 1814 (1999)

Rates of elementary steps

Harmonic transition state theory:

Rate-limiting step

Emmett, Brunauer, JACS **55** 1738 (1933)

WIGNOV.

Adsorption geometries for different intermediates

ΔE =-34.3 kJ/mol

 ΔE =-37.6 kJ/mol

 $\Delta E=-97.0 \text{kJ/mol}$

 $\Delta E=-167.8 \text{ kJ/mol}$

∆E=-178.2 kJ/mol

Different N₂ transition state geometries

D

Kinetic model

Reaction rate per site:

$$r_{tot}(T, p_{N_2}, p_{H_2}, p_{NH_3}) = (1 - \gamma)r^f$$

$$r^f = \sum_i P_i k_i p_{N_2}$$

$$\gamma = \frac{p_{NH_3}^2}{K_g p_{N_2} p_{H_2}^3}$$

Harmonic transition state theory:

$$k_i = \nu \exp(-E_a / k_B T)$$

P_i is the probability to have a certain local environment

Total rate through the reactor:

$$\boldsymbol{\gamma}_{PFR}^{total} = \sum_{j=0}^{N} r(T, p_{N_2}^j, p_{H_2}^j, p_{NH_3}^j) \times \frac{\rho \mathbf{m}}{\mathbf{N}}$$
How to get the number of active sites

A real ammonia synthesis catalysts: TEM figure of a Ru particle over spinel support

A. Carlsson, S. Dahl, Haldor Topsøe A/S

From size distibution to number of active sites: ρ

Wullf construction based on DFT:

A typical calculated Ru particle with an average diameter 2.9 nm.

Honkala et al. Science 307,555 (2005)

I. Remediakis

Ab initio prediction of the rate of the real catalyst

Experimental data: S Dahl & C. Christensen, Haldor Topsøe AS

Total pressure 100 bar, H₂:N₂=3:1

Honkala et al. Science **307**,555 (2005)

Summary

- 1. ab initio prediction for NH₃ productivity on the supported metal particle
- 2. The absolute error in DFT calculations is about 0.2-0.3 eV but the relative errors are in in order of 0.06 eV ($\sim k_BT$ at reaction conditions).
- 3. The build-in insensitivity to absolute errors together with the higher accuracy of the DFT methods for relative energies, offers hope that DFT calculations can give a good overall description of the catalytic activity of other reactions as well

Can DFT do more than we expect ?

Selectivity

Greely &Norskov, Nature Materials (2006)

Promotional Effect of Gold in Catalysis by Palladium-Gold

Goodman believes that selectivity is increased because the unwanted reactions need more than two Pd atoms.

$CH_3COOH + CH_2CH_2 + 1/2 O_2 \rightarrow CH_3COOCH = CH_2 + H_2O$

on Pd/Au alloy better selectivity for vinyl acetate than on Pd (Wayne Goodman, Science (2005))

Methane Dehydrogenation on Rh@Cu(111)

First C-H bond breaking is rate limiting step
CH3 → CH2 + H: require bridge site

A. Kokalj et al JACS (2006)

Methane Dehydrogenation on Rh@Cu(111)

Second dehydrogenation of methane is prevented
C-C coupling or formation of methanol may be preferential

A. Kokalj et al JACS (2006)

Controlling the catalytic bond-breaking selectivity of Ni surfaces by step blocking

C ₂ H ₄ Activation and Selec	ctivity	
C - H bond breaking :		Dissociated ethylene
$C_2H_4 = C_2H_3 + H_3$	H	and the second
$C_2H_3 = C_2H_2 + H_3$	H	20nmv20nm
C - C coupling (Ni(211) and Ni(111))	- 2011112201111
C - C bond breaking		
$C_{2}H_{4} = 2CH_{2}$		Ag atoms /
$CH_2 = C + 2H$		
C coke (I	Ni(211))	

40nmx40nm

R. T. Vang, J. K. Norskov and F. Besenbacher et al, Nature Materials (2005)

Blocking Ni step with Ag prevents carbon formation

Controlling the catalytic bond-breaking selectivity of Ni surfaces by step blocking

R. T. Vang, J. K. Norskov and F. Besenbacher et al, Nature Materials (2005)

P-F

C-H bond breaking

C-C bond breaking

Can DFT do more than we expect ?

Computational high-throughput screening of electrocatalytic materials for hydrogen evolution

Greely &Norskov, Nature Materials (2006)

Hydrogen driven Fuel Cell

 $2H_2 \rightarrow 4H^+ + 4e^-$ Cathode:

 $O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$

 $2H_2+O_2 \rightarrow 2H_2O$ + Heat

Electricity

Heat

Environment Effects

BiP

Surface Segregation Island Formation Water splitting and oxygen Metal dissolution

Thank you for your attention

