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2.3. - Thomson coherent diffusion
2.3.1. — Scattering by a single electron
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2.3. - Thomson coherent diffusion
2.3.2. — Scattering by an atom: atom scatteringpfact

Neutral atom (atomic number 2):

- positive point charge Znucleus) surrounded by an electronic cloud.

- the electronic cloud extents from the nucleus ugeteral A

- It can be characterized by the local electron dgpéx,y,z)

- the cartesian coordinates can be transform into polamdooaes p(r, 6, @)

For a neutral atom

HL P (X,Y,2)dxdydz = ”L p(r,6,0)41r’ sinbdrdodd = Z

The integration is performaed over the whole space.

P
>
Y
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For an atom we take into account the volume of the
electronic cloud.
An elemental volume dV with electron densptyvorks as
a charged point for the primary photon. The chasgelV.




2.3. - Thomson coherent diffusion
2.3.2. — Scattering by an atom: atom scatteringpfact

For two elemental volumes dV1 and dV2 with electtarensitypl andp2, the scattered

photons will interfere
we have to consider the distance r|[bptween the two elemental volumes as well as unit

vectorss, ands defining the incident and scattered directions

Direction of scattered beam
(1, Ao)

» Direction of incident beam 2

The path differencé for the secondary photons emitted by dV1 and dV2 is:

0=(S-9)r with |s —g| =2 sirB
Or in term of wave vector:  6/A = (K-Kg).r with [k —Kk,| =2 (sin@) / A

The integration is done for the whole volume occujmgdhe cloud, that is for all values.




2.3. - Thomson coherent diffusion
2.3.2. — Scattering by an atom: atom scatteringpfact

We must know the electron density functpfor all elemental volumes

=>» use the polar coordinateBrande, starting from the nucleus (r = 0).

=>» take a spherical symmetry for the electron dengitdepends only on the distance r fro
the nucleus.

In this case, the scattered amplitude A and intehsigpend on the scattered angbeand

on the wavelength through the relation s@A (this is due to the interference term) and o
the electron density

A = A,f(sinB/A, p)

the intensity is the square of amplitude
| = 1,.f2(SinB/A, p)

Remember, the intensity is a scalar number andri@itude is a complex number.

Once the electron density function is known, we aatain the function f for all the atoms
that is for all the values of the atomic number Z.

The function f characterizes the scattering power of tbenatand depends on the atomic
number Z and the term 9.




2.3. - Thomson coherent diffusion
2.3.2. — Scattering by an atom: atom scatteringpfact

When0 = 0, all the elemental volumes are emitting in praas®the amplitude of the
scattered beam for one atom corresponds to the nwhbkctrons in the electron cloud:
Z for a neutral atom. This value is on the y-axis.

scattering factor (in electrons) scattering factor (in electrons)

1 . : 0.6 0.8 . 1
sin 6/A sin@/a (in A™)




2.3. - Thomson coherent diffusion
2.3.2. — Scattering by an atom: atom scatteringpfact

The function f is the atom scattering factor and represertschattering power of the atom
for a X-ray beam

Compare the function f for the elements H, C, Cl and Cl

When the size of an atom increases, the electron densityasesrand the factor f
decreases too.

Compare the ions Cand Ca*
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3.1. - Diffraction condition

The next step is to consider the scattering processbya atoms in a periodic lattice

We can use the diffraction condition which was denmaiet previously:

r 1S a vector defined in the direct space (crystal spf@¢a)= ua+ vb + wc
Ak* = k - k, Is a vector defined in the reciprocal spae® Ak* = ha* + kb* + Ic*
n Is a relative integer.

Thus we can present these vectors in a geometrical way
The diffraction condition isSAk* is a vector of the reciprocal lattice

=> if the end of vectok, lies at the origin of the reciprocal lattice,
=>» the end of vectok must be another point of this reciprocal lattice.




3.2. — Ewald’s sphere

We lie the crystal and the direct lattice at the centef & sphere of radius/
We draw the same geometrical construction

The extremity of vectok, lies on the surface of the sphere
The end of vectok lies at the surface of the sphere too
New formulation of the diffraction condition:

= «the end of the reciprocal vectak* must lie onto the sphere »
This sphere is called « Ewald’s sphere »




3.2. — Ewald’s sphere

Each time a point of reciprocal lattice lies ortte sphere: diffraction condition is satisfied.
But is it the case?

Generally no, or by chance
How can we brought the reciprocal points onto the surfadkeo$phere?

First way =» move the crystal and you will move the reciprocal lattice
Then points will enter or leave the sphere and therefargscthe surface
=» the diffraction condition is satisfied and we observe diffed beams

This is the case for single crystal
diffractometry




3.2. — Ewald’s sphere

Second way=>» use a set of numerous very small crystals, with all pessandom
directions for direct lattice and therefore reciproedtite

=» this increase the chance to have reciprocal pointg lgmthe Ewald’s sphere surface

=>» powder diffractometry (XRD)

You have to mill the powder in order to get a grain sizewt 10 to Sum




3.2. — Ewald’s sphere

Supplementary conditiontesolution spherewith a radius of 2{
=» to cross the Ewald’s sphere, the reciprocal point mesh$ide the resolution sphere

|Ak*|< 2/

Ewald’s sphere
Resolution spher@




3.3. — Bragg'’s relation

The reciprocal vectoDP = Ak* defines the line [h k []
The parameter of this line [h k 1] isN*

Then we obtain the relation for the diffraction by a fignof planes (hkl)

2d,,,SIN 06 = A




3.4. - Structure Factor

(amplitude of beam diffracted by atoms in the unit ¢

Fr =
(amplitude of beam scattered by a single electron)

OP; =x,a+ty,b+z.C

Path difference between the beam from the origin and the Iheamatom j, for the direction
defined by the reciprocal vectak*

6, = hx +ky, + 1z

Phase differenceq, = 216, = 2r (hx + ky, + 1z)

Structure factor: | = Z fexp [2ni (hx + ky, + 1z)]

=1

Complex number: PRI :Ip(f) exp(-21i Ak [F) drt

Intensity: |, = K.-F-F* = K |[Ful2




3.5. — Systematic absences

Ex. 1: P lattice =» translations, b andc
there is no additional translation
for an atom at the origin - =» F,,, = f, exp(2u . 0) =1

Ex. 2: | lattice =» translationsa, b,c and @+b+c)/2
Two equivalent atoms are related by the additionnal tediosi, with coordinates:
000 and Y % Y

> Foo = [f exp(2i . 0)] + [f, exp2ui (h/2 + k/2 + 1/2)]

> Fuo=f [1+cosn(h + k + )]

h+k+1=2n > Fy=21
h+k+l=2n+1 = F, =0 =»systematic absence

We use the well-known relation expli= cosfp) + i sin(e) (de Moivre’s formula)




3.5. — Systematic absences

Ex. 3. F lattice =» translations, b, ¢, (a+ b)/2, (b + ¢c)/2 and € + a)/2
=> 4 equivalents atoms at
000;1/2 1/2 0;1/2 0 1/2 and O 1/2.1/2

Fow = [f; exp(2u . 0)] + [f; exp2ui (h + k)/2] + [f exp2u (k + 1)/2] +[f; exp2ul (| + h)/2]

Fow = T [1 + cosn(h + k) + cost(k + 1) + cosr(l + h)]
Two possibilities:
h, ketl alloddoreven 2> Fy=4f
h, ketl mixed 2> F,=0
Exercice: for the cubic system, what are the diffracteas with an intensity O

h+k2+]2 hkl P I = (yes or no)

1 100 yes no no
2




3.6. - Lorentz-polarization Factor Lp
Lorentz factor L = 1/(sif® coP) = 2/(sirb sind)

Polarization factor p = (1 + ca2)/2

Lp factor Lp(powder) = (1 + c320)/( sind . sind)

Lorentz-polarization factor Lp




3.7. - Debye-Walller factor DW

Thermal vibrations of the atom®» atomic scattering factors

f; = fo . exp(- B.sirF0 / 1)

fio for atom at rest

Average value

DW = exp (- B.siR0 / A?) {sotropic)
B = 8n°u?

1? mean square amplitude of vibration




3.8. - Multiplicity factor M,

Cubic system@ ;= G, = Gy = - -

Ex. what are the plane families with the same d-spaciagrsg from (2 2 0)
(220),(-220), (2-20), (-2-20),
(202),(-202),(20-2), (-20-2),
(022),(0-22),(02-2),(0-2-2)

2> M, =12

System hki  hhl hhO Okk hhh hkO hOl Okl hOO OkO OOl
cubic 48 24 12 (12) 8 24  (24) (24) 6 (6) (6)
tetragonal 16 8 4 8) (8 8 8 (8) 4 4) 2
hexagonal 24 12 6 (12 (12) 12 (120 12 6 (6) 2
orthorhombic 8 @ @B @B (@B 4 4) @A) 2 2) (2
monoclinic 4 4 4 @ @ @ @ @ 2 2) (2
triclinic 2 2 @ @ @ @ @ @ @ @ @




3.9. — General relation

> R?( 1+cos 26
| = IO .N.M hkl ‘ Fhkl ‘ ?(m]exr{_ B

|0 = intensity of the incident X-ray beam
N = cell number

Mhkl = multiplicity factor

R = classical radius of electron

d = distance from sample

( 1+co< 20 j

. . Lorentz-polarization factor
sinBsin 206

sin’ @
exg —B——
A Debye-Waller factor




3.10 — Peak width — Scherrer’s relation
L =0.94)/ B(20)cod®

with L = average size of the crystallites (nm)
B(20) = full width at half maximum (FWHM) (radian)
0 = Bragg angle
A = wavelength (nm)




